Practical observation of deviation from Lucas–Washburn scaling in porous media
نویسندگان
چکیده
This work analyses the applicability of the Lucas–Washburn equation to experimental observations of imbibition into real network structures. The experimental pore structures used in this study are constructed from tablets of two finely ground calcium carbonates, with defined differences in particle size distribution. These are compressed under a range of different applied pressures to achieve a controlled series of porosities while maintaining the surface chemical, particulate and morphological pore characteristics constant. The porosities are determined by mercury intrusion porosimetry applying corrections for mercury compression and penetrometer expansion together with a correction for sample skeletal compression (Gane et al., J. Am. Chem. Soc., 35 (1996)). Imbibition studies are made by bringing each porous sample into contact with a supersource of liquid and the dynamic imbibition is recorded gravimetrically. Results follow a long timescale macroscopic absorption rate depending on the square root of time but show a failure to scale according to pore size in the Lucas–Washburn equation even though the constants of surface energy, contact angle and fluid viscosity have been maintained. Furthermore, values of average measured pore radius are shown to be finer than the Lucas–Washburn predicted equivalent hydraulic capillary radius. The predominance of a relevant pore size within a given pore size distribution forming a selective pathway filling based on inertial retardation of larger pores and short-term linear time wetting in finer pores is argued to account for the departure from simple pore size scaling. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Criteria for Applying the Lucas-Washburn Law
Spontaneous imbibition happens in many natural and chemical engineering processes in which the mean advancing front usually follows Lucas-Washburn's law. However it has been found that the scaling law does not apply in many cases. There have been few criteria to determine under what conditions the Washburn law works. The effect of gravity on spontaneous imbibition in porous media was investigat...
متن کاملAnalytical approach for the Lucas-Washburn equation.
Porous media can be characterized by studying the kinetics of liquid rise within the pore spaces. Although porous media generally have a complex structure, they can be modeled as a single, vertical capillary or as an assembly of such capillaries. The main difficulties lie in separately estimating the effective mean radius of the capillaries and the contact angle between the liquid and the pore....
متن کاملScaling laws for drop impingement on porous films and papers.
This study investigates drop impingement on highly wetting porous films and papers. Experiments reveal previously unexplored impingement modes on porous surfaces designated as necking, spreading, and jetting. Dimensional analysis yields a nondimensional parameter, denoted the Washburn-Reynolds number, relating droplet kinetic energy and surface energy. The impingement modes correlate with Washb...
متن کاملPrediction of Time of Capillary Rise in Porous Media Using Artificial Neural Network (ANN)
An Artificial Neural Network (ANN) was used to analyse the capillary rise in porous media. Wetting experiments were performed with fifteen liquids and fifteen different powders. The liquids covered a wide range of surface tension ( 15.45-71.99 mJ/m2 ) and viscosity (0.25-21 mPa.s). The powders also provided an acceptable range of particle size (0.012-45 μm) and surface free...
متن کاملInfluence of Inertia on Liquid Absorption into Paper Coating Structures
We elucidate in this paper the influence of inertia of the imbibing liquid with special attention to the printing of paper. This is used to explain the observed differences between the absorption properties of fluids into large and small pores in paper coating structures. Without invoking arbitrary changes of the assumed constants in Lucas-Washburn (Washburn 1921) it has been hitherto impossibl...
متن کامل